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The decreasing pixel size of digital image sensors for high-resolution imaging brings a great challenge for the
matching color filters. Currently, the conventional dye color filters with pixel size of several microns set a fundamental
limit for the imaging resolution. Here, we put forward a kind of structural color filter with circular nanohole-nanodisk
hybrid nanostructure arrays at sub-diffraction-limit spatial resolution based on the uncoupled localized surface plasmon
polaritons (LSPPs). Due to the uncoupled LSPPs taking effect, the pixel could generate an individual color even though
operating as a single element. The pixel size for the minimum color filtering is as small as 180 x 180 nm?, translating
into printing pixels at a resolution of ~ 141,000 dots per inch (dpi). In addition, through both the experimental and
numerical investigations, the structural color thus generated exhibits wide color gamut, large viewing angle, and
polarization independence. These results indicate that the proposed structural color can have enormous potential

for diverse applications in nanoscale optical filters, microscale images for security purposes, and high-density optical
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Introduction

Digital image sensors, which have been widely used for
photography, video imaging, and machine vision, are ad-
vancing toward the direction of miniaturization and high
resolution. It brings a great challenge for the conven-
tional optical elements such as color filters to improve
the spatial resolution [1]. An ultrahigh-resolution digital
image sensor with imaging unit size of 50 nm by vertical
nanorod arrays was demonstrated in 2015 [2], while the
unit size of traditional color filter mainly fabricated by
organic dye polymers or chemical pigments was as large
as several micrometers. Thus, one color filter unit will
cover several imaging units and cause a loss to the
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imaging resolution, which could not meet the demand
for the future high-resolution imaging [3].

Recently, color filtering based on structural colors pro-
vides an alternative method to control light spatially [4—
6]. The structural color is mainly based on the inter-
action between light and various nanostructures rather
than materials, so it is capable to generate much smaller
pixel sizes than the pixels achieved today in image sen-
sors [7—11]. Abbe’s classical diffraction limit states that
the minimum resolvable distance between two closely
spaced objects is at best half the wavelength used for im-
aging in visible light [12]. Since the discovery of extraor-
dinary optical transmission (EOT) phenomenon in 1998
[13], plasmonic effects have been widely used for design-
ing structural color filters (SCFs), providing a possibility
for the color filter to realize a spatial resolution reaching
the sub-diffraction limit [14—17]. At present, many kinds
of SCFs have been reported with a variety of plasmonic
nanostructures [18], such as periodic subwavelength
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nanohole arrays [19-21], plasmonic nanodisks [22-24],
hybrid nanohole-nanodisk structures [25-28], and sub-
wavelength metal gratings [29-32]. For the applications
of SCFs in image sensors, the small pixel size, wide color
gamut, large viewing angle, and polarization independ-
ence are the major issues to be addressed. Burgos et al.
exhibited a kind of plasmonic SCFs based on the peri-
odic metallic subwavelength hole arrays. The colors were
set by the periodicity of plasmonic building blocks due
to the coupling effect, resulting in micrometer-sized
pixels [33]. Structural colors generated from all-
dielectric metasurfaces with a high refractive index and
low loss offer high saturation and high efficiency [34,
35]. Sun et al. presented a kind of all-dielectric structural
color generated by the electric and magnetic resonances
in TiO, metasurfaces. However, the distinct colors could
only be observed when the metasurface was reduced to
around 1.6 um [36]. Horie et al. reported a kind of trans-
missive color filters based on periodical subwavelength
silicon nanoholes that could replace conventional dye-
based color filters used in backside-illuminated CMOS
image sensor technologies. Nevertheless, its pixel size
could only be shrinked down to nearly 1 um and only
had an insensitive response to a + 20° angular range
[37]. Yang et al. introduced a kind of reflective color fil-
ter based on asymmetric Fabry-Perot cavities, which
could get a minimum pixel size of 500 nm [38]. Zeng et
al. demonstrated a kind of plasmonic subtractive color
filter based on the one dimensional (1D) nanogratings
patterned in a single optically thin Ag film, generating
extremely small pixel size close to the optical diffraction
limit due to the short-range interactions of surface plas-
mon polaritons (SPPs). However, it was sensitive to the
incident polarization [39]. Kumar et al. presented an ap-
proach for full-color printing by encoding color informa-
tion into Ag/Au nanodisks raised above a holey
backreflector. The color thus generated was preserved
even as individual pixels of 250 x 250 nm? enabling
color printing at a resolution of ~ 100,000 dpi, closing to
the diffraction-limited resolution [40]. Small (tens of
nanometers) isolated semiconductor nanostructures can
be used to generate the scattering colors; however, they
do not scatter strongly enough to be viewed plainly in a
bright-field reflection microscope [41].

Here, we propose a kind of structural color with circular
nanohole-nanodisk hybrid nanostructure arrays based on
the uncoupled localized surface plasmon polaritons
(LSPPs), obtaining an individual color pixel size of
180 x 180 nm?, corresponding to a spatial resolution of ~
141, 000 dpi. In addition, the structural color thus gener-
ated reveals a wide color gamut with a large viewing angle
and strong polarization insensitive property. An illustra-
tive color palette is obtained by changing the geometrical
parameters of the hybrid nanostructures, including the
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primary component colors of cyan, magenta, and yellow
(CMY). The simulation results demonstrate that the real-
ized colors exhibit a large angular invariant feature up to
+ 40°. Moreover, the circular shape of nanostructures
makes the demonstrated structural color reveal a strong
polarization independence. Furthermore, due to the
uncoupled LSPPs taking effect in light field modulation,
the individual color pixel can be generated even though
operating as a single element, resulting in the achievement
of sub-diffraction-limit resolution. As a proof-of-concept
demonstration, an image containing colorful letters is
printed by the suggested nanostructures.

Methods

The proposed plasmonic structural colors are reflective
square-lattice circular nanodisk-nanohole hybrid nano-
structure arrays on silicon substrate, as shown in Fig. 1a.
The 25 nm Ag was directly evaporated onto the 120 nm
polymethyl methacrylate (PMMA) pillars with 1 nm Cr
as the adhesion layer. Here, silicon was selected as the
substrate due to its high conductivity, which is conveni-
ent for the electron-beam lithography (EBL) fabrication.
Ag was specifically chosen as the metallic layer due to
its low extinction coefficient. Furthermore, its inherent
formation of a thin (~ 2-3 nm) oxide layer (Ag,O) that
will cause a slight shift in the spectra, but it has a little
effect on the structural color performance [17].

Figure 1b shows the schematics of the fabrication
process for the nanostructures as suggested. Firstly, the
electron-beam resist PMMA with the thickness of 120
nm was spin-coated onto the silicon substrate (Fig. 1b-i).
And then, the PMMA nanopillar templates were ex-
posed by the NanoBeam Limited nB5 system with an ac-
celerating voltage of 100 kV and a beam current of 100
pA. The development process was performed by im-
mersing the sample in methyl isobutyl ketone (MIBK)
solution at 25 °C for 2 min, followed by rinsing in isopro-
pyl alcohol (IPA) for 2min. Finally, the sample was
blow-dried under a steady stream of N, (Fig. 1b-ii). And
then, an adhesion layer of Cr (1 nm) and an Ag film (25
nm) were deposited by an e-beam evaporator system
(Fig. 1b-iii). Figure 1c shows the SEM images of the ul-
timately achieved circular nanodisk-nanohole hybrid
structure array.

Results and Discussion

Wide Color Gamut

Figure 2a displays a palette of experimentally reflected
colors obtained by changing the diameter D and period
P of the nanostructure arrays. Corresponding positions
of these colors are plotted in the CIE 1931 color space,
as shown in Fig. 2b, which confirms the capability for
achieving the main CMY colors ranging from cyan to
magenta to yellow. The reflectivity is then characterized
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Fig. 1 a lllustration of the circular nanodisk-nanohole hybrid nanostructure arrays on silicon substrate. b The schematics of the fabrication process
for the designed nanostructures. ¢ SEM images of the fabricated nanostructure arrays with P = 200 nm and D = 130 nm. The inset gives an enlarged
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using the NOVA-EX spectrometer established on the
microscopic system (Olympus-BX53) with the illuminat-
ing wavelength ranging from 400 to 800 nm. The reflec-
tion signals are collected by an objective lens (MPlanFL
N, NA = 0.9, 100x). Figure 2c presents the experimental
reflective spectra of the samples, the valleys redshift as
D varies from 70 to 110 nm. Moreover, for the same
structures, the simulated reflective spectra obtained by
the finite-difference time-domain (FDTD) method
shown in Fig. 2d are in qualitative agreement with the
corresponding experimental results, where valleys red-
shift with the increasing D. However, it still exists a little
difference due to the shape and size deviations from
nanofabrication, and the refractive indices, as well as the
thicknesses in the experiment, could be slightly different
from those used in the simulation. The contour maps of
the experimental reflective spectra plotted in Fig. 2e, f
demonstrate that the impact of period P on spectral
modulation is fairly small, while the diameter D plays a
dominant role for the spectral control, which is different
from the situation where the period is the main factor

reported in other common literatures [19-21, 33, 36,
37]. And this property makes it possible to define colors
with only one single nanostructure.

Physical Mechanism

It is known that the optical properties of periodical
nanostructures are largely dependent on the distance be-
tween nanostructures, especially when the distance is
relatively small. This is because the coupling effect asso-
ciated with the hybridization of the dipole or higher
multipolar plasmons between nanostructures lead to
variations in the collective plasmon energy [26, 42, 43].
However, the coupling effect limits the pixel size, and
sometimes causes the non-negligible resonant peak shift
or peak split, thus leading to unexpected color gener-
ation [17]. Due to the short propagation distance of
short-range surface plasmon polaritons (SRSPPs) and
small decay length of LSPPs, as the separation increases,
the coupling effect becomes weaker, and interactions be-
tween neighboring nanostructures become negligible
[23]. Hence, in order to avoid the coupling effect and
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Fig. 2 a Recorded color palette of the reflective subtractive colors as functions of the period P (varying from 150 to 240 nm in an increment of
10 nm) and diameter D (varying from 70 to 140 nm in an increment of 10 nm). Each palette square has a size of 8 x 8 pmz, and the whole array
is under illumination by an un-polarized white light. b CIE1931 chromaticity diagram overlaid with the black points corresponding to the colors
extracted from a. Experimental (c) and simulated (d) reflective spectra of the nanostructure arrays with different geometrical parameters. For
example, “70-240" means D = 70 nm, P = 240 nm. e Contour map of the experimental reflective spectra as a function of the incident wavelength
and period. The period P changes from 180 to 240 nm, while keeping D = 100 nm as a constant. f Experimentally reflection contour map for
nanostructure arrays with different diameters changing from 70 to 140 nm at a constant period of 230 nm. The white asterisks represent the
valleys' positions (), and the white dashed lines refer to the fitted straight lines with the corresponding valleys

achieve a kind of structural color reached to the sub- reflective valleys and long incident wavelength of 600

diffraction-limit resolution, the space between nanopar-
ticles must be large enough and the size of the unit cell
should be less than the diffraction-limited size.

In order to analyze the underlying physical mechanism
of the color filtering effect, the nanostructure arrays with
large and small inter-particle distances have been ana-
lyzed by using the FDTD method. Figure 3 presents the
simulated electric field (|E|*) distribution results at

nm, respectively. For the structure with a large inter-
particle distance, no matter at short (Fig. 3a) or long
(Fig. 3b) incident wavelength, the strong electric-field in-
tensity distributions are both merely confined at the
edges of the nanodisks and nanoholes, demonstrating
that there is nearly no coupling LSPPs existing. In com-
parison, for the structure with a small inter-particle dis-
tance, as shown in Fig. 3c, the electric-field intensity
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confined on the Ag/Air interface demonstrates that it
exists the SRSPPs coupling effect at short incident wave-
length. And in Fig. 3d, the electric-field intensity limited
in the gap between nanodisks illustrates that there is a
strong LSPPs coupling effect at long incident wave-
length. Therefore, when the distance is small, both the
LSPPs and the SRSPPs coupling effect are in charge of
light field modulation, while for the structure with a lar-
ger distance, there is nearly no coupling effect.

In our design, the inter-particle distance is large
enough to avoid the coupling effect, so the observed
colors in Fig. 2a are mainly modulated by the uncoupled
LSPP modes. The property of LSPP mode is relevant to
the shape and size of the nanoparticles [44-46]; thus,
the resonant wavelength of the designed structure is
mainly controlled by the diameters of the nanostructure
(shown in Fig. 2f). And due to the uncoupling effects,
the reflective valleys stay almost unchanged as the
period increases, corresponding with the experimental
results shown in Fig. 2e.

Polarization Independence and Large Viewing Angle

Both polarization independence and large viewing angle
are necessary for the color filter in image sensing appli-
cations. Considering the circular shape of the nanostruc-
ture is symmetric along the x and y directions, it can be
concluded that the proposed structural color is
polarization independent. To investigate the viewing
angle effect, the reflective spectra under various incident

light angles have been analyzed by the FDTD method.
The simulation model is built based on the schematic
diagram shown in Fig. la. And the Broadband Fixed
Angle Source Technique (BFAST) is used. The complex
refractive indices of the material for simulations are
based on the data from Palik in the material library of
the software. The simulated results for both p-
polarization and s-polarization shown in Fig. 4a, b illus-
trate that the reflective spectra almost keep invariant
with the incident angle up to + 40°, demonstrating a
large viewing angle.

Super High Resolution

Owing to the uncoupled LSPPs, our design offers a kind
of high spatial resolution structural color with pixel size at
optical sub-diffraction limit. To verify the achievement of
super high resolution, a set of resolution test structures
are fabricated. The checkered patterns consisting of nano-
structures with 5 x 5,5 x 4, ... , 2 x 1, 1 x 1 arrays with
size of P = 180 nm, and D = 80 nm are shown in Fig. 5a (a
bright-field microscope optical image (left) and an SEM
image (right)). As expected, in Fig. 5a-i, the arrays with
only one nanostructure can still generate the magenta
color, even though it is a single pixel without periodicity.
The individual magenta pixel with a unit cell area of 180 x
180 nm”> demonstrates that this structure could form a
pixel of color on a 180-nm-pitch grid and reach to a super
high resolution of ~ 141,000 dpi.
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The designed color pixels for subwavelength printing
applications are demonstrated by showing microscopic
colorful letters with sub-diffraction-limit pixel resolution.
We printed the letters of “Nature, Science” with the corre-
sponding structural colors, as shown in Fig. 5b-ii. Figure
5b-i, b-iii shows the SEM images of the regions outlined
in Fig. 5b-ii. In Fig. 5b-ii, the top point on the letter “i” can
be clearly visible, once again proving that even a single
nanostructure can act as a color element. This feature
gives rise to print resolution at the single-nanostructure
level, which could provide extremely high spatial reso-
lution for applications in high-density optical data storage
and microscale images for security purposes.

Conclusions
In conclusion, the structural color at optical sub-
diffraction-limit spatial resolution generated by the

Fig. 5 a Color printing resolution test pattern. b Subwavelength
color printing of “Nature” and “Science” with the size of 6 um x 9 um.
The scale bars are a-i 1 um, a-ii 500 nm, b-i 200 nm, b-ii 1 um, and
b-iii 500 nm

circular nanohole-nanodisk hybrid structure arrays is in-
troduced, which exhibits the wide color gamut, large
viewing angle, and strong polarization independence.
Due to the uncoupled LSPPs taking effect, the color
pixel sizes can reach to 180 x 180 nm?, exhibiting a high
resolution up to ~ 141,000 dpi. And by simply changing
the geometrical parameters of the nanostructure, the
demonstrated structural color can span the whole CMY
color system. Moreover, the simulation results demon-
strate that the structural color exhibits a high angular
tolerance up to + 40°. Furthermore, this structure has
the advantage of individual color generation at a sub-
diffraction-limit pixel. As a proof-of-concept demonstra-
tion, a colorful letter image has been acquired with this
structure. The proposed plasmonic structural color thus
generated has the potential for applications in nanoscale
color filters to satisfy the demand about super-high-
resolution imaging, and could be used for security pur-
poses, and high-density optical data storage.
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